Fuchs Laboratory

Fuchs Laboratory

The Fuchs laboratory uses cellular electrophysiology, immunolabeling and electron microscopy to study synaptic connections between sensory hair cells and neurons in the cochlea. One effort focuses on an unusual cholinergic receptor that mediates efferent inhibition of hair cells, driving discovery of the molecular mechanisms, and offering a target for protection against acoustic trauma.

Yau Laboratory

Yau Laboratory

Professor of Neuroscience The Solomon H. Snyder Department of Neuroscience Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore, MD 21205 Room: 905A PreClinical Teaching Building Telephone: (410) 955-1260 Fax: (410) 955-1948 Email:¬†kwyau@mail.jhmi.edu   Research summary Dr. Yau and his laboratory study visual and olfactory sensory transduction, which have interesting similarities but also [...]

Potter Laboratory

Potter Laboratory

Dr. Potter and his lab are interested in understanding how the sense of smell is received, interpreted and encoded by neurons in the brain. The lab develops sophisticated genetic techniques in Drosophila to alter the activity of defined neuronal subsets, and then monitors how those alterations affect olfactory behaviors.

Reed Laboratory

Reed Laboratory

Dr. Reed and his colleagues are identifying the pathways responsible for converting smells into signals perceived by the brain and the role of these genes in wiring this extraordinary sensory system. The laboratory also studies the remarkable ability of the nerve cells in the nose to be continually replaced throughout adult life and respond to environmental or traumatic injury by complete neuronal regeneration from identified stem cells.

Nathans Laboratory

Nathans Laboratory

Dr. Nathans began working on human vision during his graduate studies. After postdoctoral training at Genentech, Dr. Nathans joined the faculty at the Johns Hopkins University School of Medicine and the Howard Hughes Medical Institute.

Montell Laboratory

Montell Laboratory

Dr. Montell is a molecular neurobiologist who focuses on the molecular mechanisms underlying sensory signaling. As part of this work, he identified the founding member of the TRP superfamily of cation channels, Drosophila TRP, as well as the first mammalian TRP channel, TRPC1.

Glowatzki Laboratory

Glowatzki Laboratory

Dr. Glowatzki received her doctoral degree from the University of Kaiserslautern for her work on the biophysics of ligand-gated ion channels. After postdoctoral training in Germany and England, she moved to Johns Hopkins where she began her studies of synaptic signaling by mechanosensory hair cells of the mammalian cochlea.

Dong Laboratory

Dong Laboratory

Dr. Dong, trained in molecular neuroscience, has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). He is interested in studying the function of these genes in pain and itch sensation by multiple approaches including molecular biology, mouse genetics, mouse behavior, and electrophysiology.

Doetzlhofer Laboratory

Doetzlhofer Laboratory

A main goal of Dr. Doetzlhofer’s laboratory is to identify and characterize the molecular mechanisms of hair cell development in the mammalian auditory system. She would also like to identify the molecular roadblocks preventing mammalian hair cell regeneration. In mammals, hair cell generation is limited to embryonic development. Lost hair cells are not replaced leading to deafness and balance disorders.

Deans Laboratory

Deans Laboratory

As developmental neurobiologists, Dr. Deans and his laboratory focus on the molecular mechanisms underlying nerve cell polarization and morphogenesis. Their current studies examine developmental mechanisms that may be shared by the retina and inner ear.

Caterina Laboratory

Caterina Laboratory

Dr. Caterina’s laboratory studies the mechanisms for detecting, transmitting and perceiving thermal sensations and pain. Using molecular genetic and behavioral approaches, his group has established the role of mammalian Transient Receptor Potential (TRP) family of channels in thermosensation.